BESIII Status and Recent Results

Zhengguo ZHAO (Representing BESIII Collaboration)

University of Science and Technology of China

NSTAR 2011, May 17-20, 2011, JLAB, USA

Outline

- Introduction
- Status
- Selected recent results
- Excited baryon physics program
- Summary

Beijing Electron Positron Collider (BEPC)

The BESIII Detector

BESIII Collaboration

<u>http://bes3.ihep.ac.cn</u> ~300 members from 48 institution of 9 counties

Features of the BEPC Energy Region

- Rich of resonances, charmonium and charmed mesons
- Threshold characteristics (pairs of τ, D, D_s, charmed baryons...)
- Transition between smooth and resonances, perturbative and non-perturbative QCD
- Energy location of the gluonic matter and glueball, exotic states and hybrid

Physics Topics at BES

- Light hadron spectroscopy
 - Search for exotic hadrons
 - Spectroscopy of meson and baryons
- Charmonium
 - New charmonium states above open charm threshold.
 - Production and decay mechanisms
 - Spectroscopy
- Open charm
 - Precision measurement of CKM matrix
 - Decay constants and form factor
 - D₀-D₀bar mixing, CPV
- Precise measurement of R values, τ mass, ...
- Search for rare/forbidden decays, LVP, CP violation, etc.

BESIII Data Samples

	Previous	BESIII (2009-2014)	BESIII target
J/ψ	BESII: 58M	2009: 225M 2012: 1 B (?)	10B
ψ'	BESII: 14M CLEO: 28 M	2009: 106M 2012: 0.5B (?)	3 B
ψ(3770)	CLEO: 0.8 /fb	2010: 0.9/fb 2011: 2/fb	20 /fb
ψ(4010), ψ(4160), & scan	CLEO: 0.6 /fb	2011: 0.5/fb (?) 2013: 5/fb	
R scan & Tau	BESII	2014	

Results from BESIII

- Confirm BESII results
 - threshold enhancement in γpp, X(1835), ...
- New improved measurements
 - $\mathbf{h}_{c}, \boldsymbol{\eta}_{c}, \boldsymbol{\chi}_{cJ}, \dots$
- New observations
 - $\chi_{\rm cJ}$ decays
 - h_c decays
 - Light hadrons, ...

pp Threshold Enhancement

- Observed at BESII in 2003
- Confirmed by CLEOc and BESIII
- Agree with BESII results

Pure FSI interpretation of the narrow and strong $p\bar{p}$ threshold enhancement is disfavored. Other possibilities: conventional meson, $p\bar{p}$ bound state or glueball.....?

Observation of X(1835) from J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'

M=1833.7±6.1(stat)±2.7(syst)MeV Γ=67.7±20.3(stst)±7.7(syst)MeV

- X(1835) is confirmed at BESIII
- Two new resonances are observed
- PWA is needed, inference among the resonances needs to be considered

State	M(MeV)	Г(MeV)	Stat. sig. (σ)
X(1835)	1838.1±2.8	179.5±9.1	25
X(2120)	2124.8±5.6	101±14	7.2
X(2370)	2371.0±6.4	108±15	6.7

PRL 106 (2011) 072002 12

Observation of X(1870)

Is X(1870) a new resonance, or $\eta_2(1870)$ or X(1835)?

$a_0(980) - f_0(980)$ Mixing

- Mixing intensity provides important information to understand the nature of $a_0(980)$ and $f_0(980)$.
- Narrow peak (8 MeV) at around 980 MeV can be expected in $\eta \pi (J/\psi \rightarrow \phi f_0 \rightarrow \phi a_0 \rightarrow \phi \eta \pi \text{ case}) \text{ or } \pi^+\pi^- (\chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0$ $\rightarrow \pi^+\pi^-\pi^0 \text{ case}) \text{ invariant mass spectra.}$

signal parameterization

BESIII, Phys.Rev. D83 032003 (2011)

a₀-**f**₀ Mixing

16

a₀-**f**₀ Mixing

mixing intensities can be derived from measured / predicted $f_0 \rightarrow K^+K^-, a_0 \rightarrow K^+K^-, \eta\pi$ coupling constants

Excited Baryon at BES

- The understanding of the internal quark-gluon structure of baryons is one of the most important tasks in both particle and nuclear physics.
- The systematic study of various baryon spectroscopy will provide us with critical insights into the nature of QCD in the confinement domain.
- The available experimental information is still poor, especially for the excited baryon states with two strange quarks, e.g., ±*. Some phenomenological QCD-inspired models predict more than 30 such kinds of baryons, however only two are experimentally well established.

List of Nucleon Resonances (uud, udd)

					Statu	s as se	en in –			
Particle	$L_{2I \cdot 2J}$	Overall _I status	$N\pi$	$N\eta$	ΛK	ΣK	$\Delta \pi$	$N\rho$	$N\gamma$	
N(939)	P_{11}	****								_
N(1440)	P_{11}	****	****	*			***	*	***]
N(1520)	D_{13}	****	****	*			****	****	****	
N(1535)	S_{11}	****	****	****			*	**	***	PDG 2008
N(1650)	S_{11}	****	****	*	***	**	***	**	***	-
N(1675)	D_{15}	****	****	*	*		****	*	****	
N(1680)	F_{15}	****	****				****	****	****	
N(1700)	D_{13}	***	***	*	**	*	**	*	**	
N(1710)	P_{11}	***	***	**	**	*	**	*	***	
N(1720)	P_{13}	****	****	*	**	*	*	**	**	_
N(1900)	P_{13}	**	**					*		
N(1990)	F_{17}	**	**	*	*	*			*	(**)
N(2000)	F_{15}	**	**	*	*	*	*	**		
N(2080)	D_{13}	**	**	*	*				*	not well-
N(2090)	S_{11}	*	*							established
N(2100)	P_{11}	*	*	*]
N(2190)	G_{17}	****	****	*	*	*		*	*	7
N(2200)	D_{15}	**	**	*	*					
N(2220)	H_{19}	****	****	*						
N(2250)	G_{19}	****	****	*						
N(2600)	I_{111}	***	***							7
N(2700)	K_{113}	**	**							

Excited Baryons from Charmonium Decays

- Excited baryons can be produced through J/ ψ decays.
- For $J/\psi \rightarrow \pi NN$ and $\pi\pi NN$ decays, the $N\pi$ and $N\pi\pi$ are pure isospin $\frac{1}{2}$ system.
- Search for "missing" baryon states and hybrid baryon with large data sample at BESIII/BEPCII.

N*(2050) from BESII

N*(2050) from $J/\psi \rightarrow p\overline{p}\pi^{0}$ **BESII:** Phys. Rev. D 80, 052004 (2009)

N*(2050) stat. sig. >>5σ, the spin-parity favors 3/2⁺

 $M = 2040_{-4}^{+3} \pm 25 \text{ MeV}, \ \Gamma = 230 \pm 8 \pm 52 \text{ MeV}$

N*	M(MeV/c ²)	Г(MeV/c²)	JP	fraction(%)	Br (×10 ⁻⁴)
N(1440)	$1455_{-7}^{+2} \pm 43$	$316^{+5}_{-6} \pm 67$	1/2+	9.74~25.93	1.33~3.54
N(1520)	$1513_{-4}^{+3} \pm 13$	$127_{-8}^{+7} \pm 37$	3/2-	2.38~10.92	0.34~1.54
N(1535)	$1537_{-6}^{+2} \pm 12$	$135^{+8}_{-8} \pm 39$	1/2-	6.83~15.58	0.92~2.10
N(1650)	$1650^{+3}_{-6} \pm 26$	$145_{-10}^{+5} \pm 31$	1/2-	6.89~27.94	0.91~3.71
N(1710)	$1715^{+2}_{-2} \pm 29$	$95^{+2}_{-1} \pm 44$	1/2+	4.17~30.10	0.54~3.86
N(2050)	$2040^{+3}_{-4} \pm 25$	$230^{+8}_{-8} \pm 52$	3/2+	23.0~41.8	0.91~3.11

BESIII will provide better opportunity to study of baryon spectroscopy!

N^{*}(1535) from $\psi' \rightarrow p\bar{p}\eta$ at BESIII

Yutie Liang's talk for details

Preliminary

Preliminary Results from PWA

Analysis of $\psi' \rightarrow p \overline{p} \pi^0$ at BESIII

Preliminary

PWA is underway

Observation of χ_{cJ} decaying into $p\overline{p}K^+K^-$

- COM can describe most of χ_{cJ} decays except $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda}$
- So far, only ground states of baryon (p, Λ) pairs has been reported in χ_{cJ} decays.
- Excited baryon state ($\Lambda(1520) \rightarrow pK$) is observed for the first time in the χ_{cJ} decays at BESIII

Observation of χ_{cJ} decaying into $p\overline{p}K^+K^-$

Besides two-body component, three-body components $\chi_{cJ} \rightarrow \bar{p}K^+\Lambda(1520)$ +c.c. and $\chi_{cJ} \rightarrow p\bar{p}\phi$ are also observed.

	χ _{c0}	χ_{c1}	X _{c2}
$B(\chi_{cJ} \rightarrow p\overline{p}K^{+}K^{-}) (10^{-4})$	1.24±0.20±0.18	1.35±0.15±0.19	2.08±0.19±0.30
B(χ _{cJ} ->pK ⁺ Λ(1520)+ <i>c</i> . <i>c</i> (10 ⁻⁴)	3.00±0.58±0.50	1.81±0.38±0.28	3.06±0.50±0.54
$B(\chi_{cJ} \rightarrow \Lambda(1520)\Lambda(1520))$ (10 ⁻⁴)	3.18±1.11±0.53	< 1.00	5.05±1.29±0.93
B(χ _{cJ} ->ppφ) (10 ⁻⁵)	6.12±1.18±0.86	< 1.82	3.04±0.85±0.43

All are the first measurements from BESIII Submitted to PRD. arXiv:1103.2661

Summary

- **BEPCII/BESIII** is performing well
 - Peak luminosity reached at 3770 MeV: 6.5x10³².
 - Data collected: 106 M ψ (2S), 225 M J/ ψ , 2.8 fb⁻¹ at ψ (3770).
 - ~500 pb⁻¹ data sample will be collected at 4.01 GeV by the end of May.
 - Higher statistics data will be accumulated in the near future for J/ψ , ψ' data sample.
- Results are obtained from data sample of J/ψ , ψ '.
- Baryon physics program is underway, stay tuned.

Upgraded BEPC-BEPCII

BES Data Samples

Phys. Rev. Lett. 97 (2006) 062001

BW fit yields:

$$M = 2065 \pm 3^{+15}_{-30} \text{ MeV/c}^2$$
$$\Gamma = 175 \pm 12 \pm 40 \text{ MeV/c}^2$$

PWA is performed.

- well-established N*'s are fixed to PDG values.
- for N*(2065), L=1 is much worse than L=0 in the fit.

 \rightarrow 1/2⁺ or 3/2⁺ (improve log likelihood by 400)

1/2⁺ + 3/2⁺ (improve log likelihood further by 60)

Study of h_c

- Inclusive analysis of $\psi(2S) \rightarrow \pi^0 h_c$ identify h_c in the inclusive recoiling mass spectrum of π^0 .
- E1-tagged analysis of $\psi(2S) \rightarrow \pi^0 h_{c_r} h_c \rightarrow \gamma \eta_c$ tag E1 photon (~503 MeV) in $h_c \rightarrow \gamma \eta_c$ h_c significance improved in inclusive π^0 spectrum
- Exclusive analysis of $\psi(2S) \rightarrow \pi^0 h_{c_r} h_c \rightarrow \gamma \eta_c$
- h_c hadronic decays

Observation of h_c: Inclusive $\psi(2S) \rightarrow \pi^0 h_c$

- Reconstruct h_c from the recoil of inclusively identified π^0
- Fit: D-Gaussian signal + 4th Poly. bkg

Observation of h_c: E1-tagged ψ (2S) $\rightarrow \pi^0$ h_c,h_c $\rightarrow \gamma \eta_c$

Theory predicts much more baryons than what observed \rightarrow missing baryons

Agreement Between Data and MC

Study of χ_{cJ}

The $\chi_{\mbox{\tiny CJ}}$ decays provide important information for

- study gluonium: χ_c → gg → (qq)(qq)
 C. Amsler and F. E. Close, Phys. <u>Rev. D</u> 53, 295 (1996).
- test of Color Octet Mechanism (COM)
 G. T. Bodwin *et al.*, Phys Rev. Lett. D51, 1125 (1995).
 H.-W. Huang and K.-T. Chao, Phys. Rev. D54, 6850 (1996).
 J. Bolz *et al.*, Eur. Phys. J. C 2, 705 (1998).
- First measurement of $\chi_{cJ} \rightarrow \omega \phi$, $\chi_{c1} \rightarrow \omega \omega$, $\phi \phi$
- First measurement of $\chi_{cJ} \rightarrow \gamma \phi$
- •

(arXiv:1103.2661, arXiv:1103.5564, ...)